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We present results for r-modes of relativistic nonbarotropic stars. We show that the main differ- 
ential equation, which is formally singular at lowest order in the slow-rotation expansion, can be 
regularized if one considers the initial value problem rather than the normal mode problem. How- 
ever, a more physically motivated way to regularize the problem is to include higher order terms. 
This allows us to develop a practical approach for solving the problem and we provide results that 
support earlier conclusions obtained for uniform density stars. In particular, we show that there 
will exist a single r-mode for each permissible combination of 1 and m. We discuss these results 
and provide some caveats regarding their usefulness for estimates of gravitational-radiation reaction 
timescales. The close connection between the seemingly singular relativistic r-mode problem and 
issues arising because of the presence of co-rotation points in differentially rotating stars is also 
clarified. 

I. INTRODUCTION 

In the last few years the instability associated with the r-modes of a rotating neutron star has emerged as a 
plausible source for detectable gravitational waves [33]. This possibility has inspired a considerable amount of work 
on gravitational-wave driven instabilities in rotating stars and our understanding continues t o  be improved as many of 
the relevant issues are intensely scrutinized (see [2-71 for detailed reviews and important caveats on the subject). To 
date, most models for the unstable r-modes are based on Newtonian calculations and the effect of the instability on 
the spin rate of the star is estimated from post-Newtonian theory. This may seem peculiar given that the instability is 
a truly relativistic phenomenon (its driving mechanism is gravitational radiation reaction); but a complete relativistic 
calculation of the oscillation modes of a rapidly rotating stellar model (including the damping/growth rate due to  
gravitational-wave emission) is still outstanding, and the inertial modes of relativistic stars (of which the r-modes form 
a sub-class) have actually not been considered at all until very recently. In contrast, our understanding of rotating 
Newtonian stars has reached a relatively mature level and it is thus not surprising that most attempts to understand 
the r-mode instability and its potential astrophysical relevance have been in the context of Newtonian theory. 

In [8], two of us discussed the rotationally restored (inertial) modes of a slowly rotating relativistic star in some 
detail. One of the main results of this work was that these modes have a fundamentally different character in barotropic 
versus nonbarotropic stellar models (as discussed below). A subsequent paper [9] presented detailed numerical results 
on these modes, including a fully relativistic calculation of their growth timescales. Controversy has arisen in the 
literature, however, regarding the existence and nature of the r-modes in nonbarotropic stars. 

To lowest order in the slow rotation approximation, the r-modes of nonbarotropic stars are governed by an ordinary 
differential equation first derived by Kojima [lo] (see below). Unfortunately, this equation turns out to be singular 
when the equilibrium star is described by many reasonable equations of state (for example, certain polytropes of 
realistic compactness). On this basis it has been argued [ll-141 that the r-modes will not exist in stars for which 
Kojima’s equation is singular. Our aim here is to argue for the opposite view: that regular r-mode solutions will 
indeed exist in such stars. 

Singular normal mode equations are also encountered when one considers the oscillations of differentially rotating 
Newtonian stars. Although the normal mode solutions are indeed singular, the physical perturbation that one obtains 
by solving the initial value problem is non-singular [15, 161. The singularity is an artifact of assuming a normal 
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Nonbarotropic stars 
Newtonian Theory infinite set [21] of r-modes for each [ I ,  m] 

infinite set of g-modes 
infinite set [21] of r-modes for each [ l ,  m] 
infinite set of g-modes 
continuous spectrum? 

General Relativity 

Barotropic stars 
a single r-mode for I = m 
infinite set of inertial modes 
no pure r-modes 
infinite set of inertial modes 

Let us discuss this information in some more detail. We focus our attention on the low-frequency part of the stellar 
spectrum (excluding, for example, pulsation modes associated with acoustic waves: the so-called p-modes). It is well 
established that if the star is stratified in some way, i.e., if the true equation of state depeda  uii sereid pziirilcieis, 
there will exist a distinct set of modes whose dominant restoring force is gravity: the so-called g-modes. In stars 
lacking such a stratification. these modes are all trivial (degenerate at zero frequency). Following [8], we use the terms 
“barotropic” and “nonbarotropic” to distinguish these two classes of stellar model, with “barotropic” denoting a star 
for which the true equation of state describing both the background star and its perturbations is a prescribed one- 
parameter function p = p ( c ) .  The main sources of stratification in neutron stars are entropy or chemical composition 
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gradients, with the latter being the most important for all but very hot (newly born) stars. 
Perturbations of a spherical star can be decomposed into two classes depending on their angular behaviour (essen- 

tially how the perturbed velocity transforms under parity, see [SI). Following the standard relativistic terminology 
we will refer to  perturbations that transform under parity like the scalar spheric4 hvrnonic qrn as “polzr”, while 
referring to those that transform opposite to qrn a~ “axial”. The g-modes are of the polar variety, while the r-modes 
are axial. In a non-rotating Newtonian star the axial modes (r-modes) are all trivial; lacking a restoring force, they 
are degenerate at zero frequency. The g-modes, on the other hand, are trivial only in non-rotating barotropes. That 
is, they are degenerate at zero frequency only when their restoring force (buoyancy) vanishes. 

This classification of modes applies also to rotating stars, with the parity class of a mode being determined by its 
spherical limit along a sequence of rotating models [22]. Rotation imparts a finite frequency to the zero-frequency 
perturbations of spherical stars - their degeneracy is broken by the Coriolis force. Because these modes are rota- 
tionally restored their frequencies are proportional to the star’s angular velocity R. Clearly, these modes will have 
a dramatically different character depending on the nature of the zero-frequency subspace of the non-rotating star. 
For nonbarotropic stars this subspace is spanned by the (axial) r-modes alone and so the rotationally restored modes 
all have axial parity. (That is, the modes will become purely axial in the spherical limit.) In barotropic stars, on 
the other hand, the space of zero frequency modes of the spherical model includes the (polar) g-modes in addition to 
the (axial) r-modes. When rotation breaks the degeneracy of this larger zero-frequency subspace it results in modes 
that are generically mixtures of axial and polar components (at the same order in 0). Hence, the generic rotationally 
restored mode of a barotropic star is a r/g-hybrid whose spherical limit is not a pure axial perturbation, but a mixture 
of axial and polar perturbations [23-251. In fluid mechanics, the rotationally restored modes are generally referred 
to as inertial modes 124, 26, 271. In order to distinguish between the two classes of inertial modes we refer to  modes 
which become purely axial in the spherical limit as r-modes, while modes that limit to  a mixed parity state are called 

L? a iioiiluzotiopic Nswtmim s i x  there is ai hifinite set of r-modes for each perrmssfbie combination of I and 
m. At leading order in the slow-rotation expansion (order 0) these modes are degenerate at a finite frequency. This 
degeneracy is broken by order R2 terms. In addition, there is a distinct infinite set of g-modes already in the non- 
rotating star. In a barotropic Newtonian star one does not generically find distinct r- and g-modes, but finds instead 
an infinite set of inertial modes. Interestingly, Newtonian barotropes do retain a vestigial set of pure axial modes, a 
single r-mode for each 1 = m. But clearly such a limited set of r-modes will be insufficient to  describe the dynamical 
evolution of an arbitrary initial perturbation with axial parity. The required “missing” modes must be found among 
the hybrids [23]. 

Before proceeding it is worth pointing out that the low-frequency modes of a rapidly spinning neutron star may 
be similar to those of a barotropic model even though one would expect a realistic model to be stratified due to  
(say) composition gradients. If the Coriolis force dominates the buoyancy force, one would expect the low-frequency 
mode spectrum to  be made up of inertial modes [24]. Given that the g-modes of a “typical” neutron star model have 
frequencies below a few hundred Hz, it seems plausible that the low-frequency modes of millisecond pulsars will, in 
fact, be inertial modes. 

One would not expect the above results to change much when the problem is considered within the framework of 
general relativity. However, there are important differences that one must consider. First, the vestigial set of 1 = rn 
r-modes that one finds in a Newtonian barotrope do not exist in a relativistic barotropic star [8]. 

Instead, all the inertial modes of such stars must have a hybrid character. This is particularly important because 
it is the 1 = m = 2 r-mode that is most likely to dominate the gravitational-wave driven instability. Second, it is 
possible to  find r-modes of a relativistic nonbarotropic star working only to order R in a slow-rotation expansion. 
As already mentioned, an order R2 calculation is required t o  find the r-mode eigenfunctions in the Newtonian case. 
However, in the relativistic case the degeneracy is partially split at order 0, allowing one to  compute the leading part 
of the mode eigenfunction. Thus, for barotropic stars in general relativity there exist no pure r- or g-modes, but an 
infinite set of inertial modes; while for nonbarotropic stars there exist distinct sets of r-modes and g-modes for each 
combination of I and m and one can partially compute the r-modes to  first order in a slow rotation expansion. 

Finally, it has also been argued that relativistic stars exhibit a continuous spectrum of axial perturbations [lo, 281. 
This continuous spectrum is associated with the singularity that appears in Kojima’s equation. One of our main 
purposes in this paper is to explore the nature of the continuous spectrum and demonstrate that it is an artifact of 
the slow rotation approximation that may not be present in physical stars. We focus our attention on the relativistic 
problem for nonbarotropic stars (the barotropic case is comparatively well understood and has been discussed elsewhere 
[9]). Our analysis is intended to extend our results [8] for uniform density stars to more realistic equations of state. 
We therefore consider the differential equation (for a complete derivation, see [SI) 

iiieitid iiioiies. 



which determines the axial metric perturbations for a “pure” relativistic r-mode (h  is directly related to bgte). In the 
equation u and X are coefficients of the unperturbed metric, and W is defined in terms of the relativistic frame-dragging 
w a s  

- R - W(.) 

R W =  

where R is the (uniform) rotation rate of the star. Furthermore, we have assumed that (in the inertial frame) the 
mode depends on time as exp(iat) and then introduced a convenient eigenvalue a as 

Using the fact that [8] 

d 
- (u + A) = 47rre2’(p + E )  
dr ’(4) 

we have 

(a  - W) { 2 - + 167r(p + E)ae2’h = 0 (5) 

The above equation was first derived by Kojima [lo], and our previous analysis [8] shows that it can be used to 
determine r-modes of a nonbarotropic relativistic star. In order for the solution to  satisfy the required regularity 
conditions at both the centre and at infinity, the eigenvalue CY must be such that a - W vanishes at some point in the 
spacetime [8]. As long as CY - Lz, # 0 inside the star, the problem is regular and one can readily solve it numerically. 
In our previous study we solved the problem for uniform density stars and found that the required eigenvalues were 
always such that the problem was non-singular [29]. There is of course no guarantee that the problem will remain 
regular for more realistic equations of state. Indeed, recent work by Kokkotas and Ruoff [ll, 121 and Yoshida [13] 
(see also [14]) extends the analysis to more realistic equations of state, eg. polytropes, and shows that the desired 
eigenvalue is then not generally such that a > W, W(R). In other words, one is (at least for some stel!ar parameters) 
forced to consider a singular eigenvalue problem. The main purpose of this paper is to discuss this problem in detail. 

11. SINGULAR EIGENFUNCTIONS 

Let us consider Eqn. (5) in the case when CY is such that we have 

a - W ( r 0 )  = 0 (6) 

for TO < R, i.e. when the problem is singular at some point ro in the stellar fluid. Suppose we use a power series 
expansion to  analyze the behaviour of the solutions to (5) in the vicinity of the singular point. Expanding in x = r-1-0, 
and assuming that all quantities that describe the unperturbed star are smooth, we use 

W M & ( T O )  + Wlx + 22s 2 . . .  

p M po +p1x + ... 
ex  M exO [1+ Xlz + ...I 

where a - & ( T O )  = 0 
E M E o  + E1Z + ... 

M M MO + Mlx + ... 
Next we introduce the Frobenius -4nsatz 

03 

h = anxn+’ 
n=O 

in (5) and find that we must have either f~ = 0 or p = 1. This problem thus belongs to the class where the difference 
between the two values for p is an integer and we would not expect the two power series solutions to  be independent. 
Indeed, further scrutiny of the problem reveals that we can only find one regular power series solution to our problem. 
This leads to  an approximate solution 

hreg M UOZ [l + U ~ X ]  (11) 
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where 

In order to arrive at a second, linearly independent, solution we resort to  the standard method of variation of 
parameters. Given one solution hl(r)  to  (5), a second solution can be obtained as 

h2 = f ( r )hi  (13) 

Introducing this combination in (5) it is straightforward t o  show that we must have 

f”h1 = [47rre2’(p + e)hl - 2h;] f’ 

(where a prime denotes a derivative with respect to r ) .  In other words 

f“ 2hi - = 47rre2’(p + e )  - - f’ hl 

which integrates to 

(15) 

Putting the various pieces together we have 

1 El -2a1 
dz Z 

with C an arbitrary normalisation constant. Integration then yields (recalling that x can take on both positive and 
negative values) 

(20) 1 f w -C - + (2a1 - El) In IzI {: 
At the end of the day, we have arrived at a second solution to our problem (we discuss the consequence of taking 
In IzI rather than In z below). Near the point TO this solution can be written 

M bo { 1 + b,z In (51 + alz} (21) hsing 

where 

(note that we need to keep the last term in (21) to work at an order that allows us to distinguish the leading order 
term of (11) from the corresponding term in the singular solution). From this expression it is clear that, while the 
function hsing is regular at r = ro its derivative is singular at this point. 

In addition to this, one can show that it is not possible to  find an overall solution to the problem (that satisfies 
the required boundary conditions at the centre and surface of the star) if one assumes that h 0: hreg in the vicinity 
of r0.  Given this result we would seem to have two options: One option is to conclude that we must have a singular 
metric/velocity perturbation, and since this would be unphysical we must rule out the associated solution. If we 



take the implications of this to the extreme, it could imply that no relativistic r-modes can exist for certain stellar 
parameters [ l l ,  131. However, this conclusion is likely too extreme. It would be surprising if a small change in, say, 
the compactness of the star (the stiffness of the equation of state) could lead to  such a drastic change in the star’s 
physics (the disappearance of its r-modes). An alternative (and perhaps more reasonable) option is to  assume that 
the appearance of a singular eigenfunction signals a breakdown in our mathematical description of the problem rather 
than a radical change in the physics. Later in this paper we will show that the problem arises because of a breakdown 
in the slow rotation approximation. However, even in the slow rotation approximation, the physical perturbation 
is in fact completely regular; the presence of the singularity in Kojima’s equation is simply a consequence of the 
assumption of normal mode time dependence. 

The normal mode equations for differentially rotating Newtonian stars exhibit mathematically identical singular 
behaviour for frequencies that lie within what we call the co-rotation band [15, 161. The eigenfunctions associated 
with this frequency band have singular derivatives that possess in general both a logarithmic singularity and a finite 
step in the first derivative at the singular point (see equations (45) - (49) of [15] and the accompanying discussion). 
The additional degree of freedom associated with the finite step in the derivative permits the existence of a continuous 
spectrum of solutions within this frequency band. At certain frequencies, the finite step in the first derivative vanishes; 
these frequencies are referred to  as zero-step solutions and they possess a special character (see below, and the 
discussion at  the end of Section 6.2 of [15]). 

The situation for Kojima’s equation is identical: in general the singular eigenfunctions possess both a logarithmic 
singularity and a finite step in the first derivative, leading to a continuous spectrum of singular solutions. Just as in 
the differential rotation problem, there are certain frequencies for which the finite step in the first derivative vanishes. 
It can be shown that taking the logarithm of 1x1 in the series expansions in Section I1 and demanding continuity of 
the function at the singular point is equivalent to the matching procedure used in Section 6.2 of [15] to  pick out the 
zero-step solutions from within the continuous spectrum of the differential rotation problem. Thus by using In 1x1 
rather than In z in the analysis above we are picking out the zero-step solutions from the continuous spectrum. 

The physical perturbation, however, is determined by solution of the initial value problem rather than the normal 
mode problem. Analysis of the initial value problem for differentially rotating systems has shown that the physical 
perturbation associated with the continuous spectrum is not singular [16]. By conducting a similar analysis of the 
time-dependent form of Kojima’s equation, we have confirmed that the same is true for the relativistic r-modes. The 
singular solutions associated with the continuous spectrum are therefore physically relevant, and cannot be discounted. 

With this in mind, let us review the key characteristics of the differential rotation continuous spectrum and ask 
whether similar characteristics are manifested in the relativistic problem. Firstly, the continuous spectrum was found 
to possess a position-dependent frequency component; such behaviour has been observed in numerical time evolutions 
of the relativistic problem [I 11. Secondly, there were fixed frequency contributions from the endpoint frequencies of 
the continuous spectrum. Ruoff and Kokkotas [ll] found such contributions in their simulations, but attributed them 
to the behaviour of the energy density a t  the surface of the star. We believe that they may instead be a hallmark of 
the continuous spectrum. The third characteristic of the continuous spectrum was a power law decay with time. In 
[ll] there are two indications of this type of behaviour. The amplitudes of the endpoint frequencies were observed to 
die away as a power law. In addition, the authors noted that there appeared to  be no contribution from the continuous 
spectrum at late times, suggesting again that it had died away. 

Consideration of the initial value problem for differential rotation also indicated a special role for the zero-step 
solutions [16]. Again, the physical perturbations were found to be non-singular. For appropriate initial data the zero- 
step solutions were found to behave in much the same way as regular modes outside the co-rotation band, giving rise 
to a clear peak in the power spectrum at a fixed frequency and standing out from the rest of the continuous spectrum. 
The zero-step solutions behaved as modes within the continuous spectrum. Analysis of the time-dependent form of 
Kojima’s equation indicates that the same will be true for the zero-step solutions to the relativistic problem. These 
solutions are therefore physical. This contradicts statements in earlier works [ll-141 that considered only the normal 
mode problem. The authors of these studies discounted these zero-step solutions within the continuous spectrum as 
being unphysical, and concluded that if r-modes entered the continuous spectrum they ceased to exist. In fact they do 
continue to exist as physically meaningful zero-step solutions, and should appear in time evolutions. For polytropic 
background models, Ruoff and Kokkotas [ll] observe no contribution at the expected zero-step frequency when they 
initialise their simulations using arbitrary initial data. It would interesting to  see whether these modes could be 
excited using initial data more closely matched to the zero-step eigenfunction; the zero-step oscillations observed in 

were excited llqing in i t ia l  data closely matched to the eigenfunction rather than arbitrary initial data. For more 
realistic equations of state, however, the time evolutions of [11] do show clear peaks at fixed frequencies within the 
continuous spectrum. This suggests the presence of zero-step solutions. 

Before moving on we should make one comment on the nature of the continuous spectrum if one makes the 
Cowling approximation. In the Cowling approximation the continuous spectrum eigenfunctions for the velocity 
perturbations are delta functions [17]. Contrast this to the situation outlined above, where the velocity perturbations 
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are proportional to the derivative of the metric perturbation, with a logarithmic singularity and (in general) a finite 
step at the singular point. The physical perturbation in the Cowling approximation (found by considering the initial 
value problem) exhibits a position dependent frequency component but no power law time dependence, no endpoint 
frequency contributions, and no zero-step solutions. The nature of the problem is changed drs.mat.ically by worEng 
in the Cowling approximation. 

We have argued above how the singular solutions of Kojima’s equation give rise to well-behaved physical pertur- 
bations when one considers the initial value problem. However, the main cause of confusion is a breakdown in the 
slow-rotation approximation. After all, Eq. ( 5 )  should really be written 

+ 8x(p  + E )  e h + 16n(p + E)aeZxh = 0(02) (23) 
(.-W){$- 1 2x I 

F’rom this we can immediately see that it is inconsistent to  use the slow-rotation expansion when a - W - 0(n2) or. 
smaller. For the problem at hand this means that the assumptions used in the derivation of Eq. (5) are not consistent 
in the vicinity of TO. Near this point we cannot discard the higher order terms while retaining the term proportional 
to (Y - W since the latter becomes arbitrarily small. 

At fist sight this may seem quite puzzling but similar situations are, in fact, common in problems involving 
fluid flows. In such problems, the singularity is usually regularized by introducing additional pieces of physics in a 
“boundary layer” near the point TO. A typical example of this, that has already been discussed in the context of the 
r-mode instability, is provided by the existence of a viscous boundary layer at the core-crust interface in a relatively 
cold neutron star (see [3] €or an extensive discussion). In that case the non-viscous Euler equations adequately describe 
the r-mode fluid motion well away from the crust boundary, while the viscous terms are crucial for an analysis of the 
reg;lon iiiiiiiedizt.te!y below the ciitst. Iii GET ~ k x ,  the rdativistic r-iiiode yrobiem i e d s  to a similar situation: -W-efi 
2y:zy f r ~ m  the p ~ k t  TO EQ. (5) t~ X C I I ~ Z L ~ . ~ ~  i&?i&s.teiit&Gii the sohition, tiii, if W ~ I L  io study the region 
near TO we need to include “higher order” terms in our analysis. 

Unfortunately, this means that it becomes very difEcult to  find a complete solution t o  the problem. The order R2 
perturbation equations for a relativistic star are rather complicated and have not yet been obtained completely. But 
for our present purposes, we can use partial results in this direction. Kojima and Hosonuma [18] have shown that the 
next order in the slow-rotation expansion brings in a fourth order radial derivative of h in Eq. (5). Retaining only 
the principal part of the higher order problem we then find that ( 5 )  will be replaced by an equation of form 

. .  

T3  + 8n(p+ E )  I >  e2’h +16n(p+~)ae~’h = 0 (24) 
d4h 
dr4 

WZg(T)aT2-  + (a  -6) 

where g ( r )  contains information about the stellar background - in particular the stratification of the star. Most 
importantly g ( r g )  # 0 and it is therefore clear that the problem is perfectly regular also near the point where a-6 = 0. 

111. A SUITABLY SIMPLE TOY PROBLEM 

Our main objective is to argue that one can in principle regularize the nonbarotropic r-mode problem. Ideally, 
we would like to  find the mode-solutions without actually having to  derive the relativistic perturbation equations to  
higher orders in the slow-rotation expansion. In other words, we are interested in a simple, practical approach to this 
kind of problem. 

As was shown in the previous section, the relativistic r-mode problem has (essentially) the following form 

nyn” + zyf’ + By = 0 (25) 

in the vicinity of the point x = T - TO = 0, where we use primes to indicate derivatives with respect to x. Both 
this toy problem, and the problem outlined below, retain the main character of Eq. (24) but are sufficiently simple 
that we can solve them analytically. From standard perturbation theory, we know that this class of problems can be 
approached via matched asymptotic expansions. Typically, the outcome is that the singular equation (the equation 
obtained by taking R -+ 0) leads to an accurate solution well away from z = 0, while the higher order term is required 
to regularize the solution near the origin. To illustrate this, and to motivate the method used to  solve the r-mode 
problem in the next section, we consider the toy problem 

Ey”” + Z2y’f - zy‘ + y = 0 (26) 

where E is small in some suitable sense. 
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Assuming a power series expansion in E we see that we first need to solve the singular equation, 

x2y” - xy’ + y = 0. ( 2 7 )  
The two solutions to this equation are y1 = x and y 2  = xln 1x1. In other words, the solutions to our toy problem 
are similar to  the two (local) solutions we found for the relativistic r-mode problem in Sect. 11. Hence, a method for 
solving our toy problem should be equally valid for the r-mode problem. 

Let us now suppose that we are interested in a global solution that satisfies boundary conditions y(1) = 1 and 
y’(1) = 0. Then we must have 

y(x) = z - z ln  1x1 (28)  

As was the case in Sect. 11, this function is well behaved at the origin but its derivative diverges (cf. Fig. 1). Note 
that this solution also satisfies the boundary conditions y(-1) = -1 and y‘(-1) = 0. 

Let us now consider the full fourth order equation ( 2 6 ) .  It is straightforward to  solve it using power series expansions. 
Inserting y = a,zn in Eq. ( 2 6 )  we find the recursion relation 

(n - 1)%, 
= -€(n 4- 4)(n + 3)(n + 2 ) ( n  + 1) (29)  

From this we see that we have four independent solutions. One of these, corresponding to  a1 # 0 truncates and leads 
to the solution y = alz.  As a result of the simple recursion relation, we can write the general solution to Eq. (26)  in 
closed form: 

Y(Z) = aoYo(z) + alYl(x) + a2y2(z) + a3y3(2) (30) 
with 

00 (-1)z 2 [(4i - 3)!!!!]’ 4i 2 

i = O  

where we have defined the symbol k!!!! = k(k - 4)!!!! with k!!!! = 1 for k 5 0. 
We now want to find the specific solution to  the fourth order problem which satisfies the boundary conditions 

y(-1) = -1 

Y( 1) = 1 
y’(-1) = 0 
y’( 1) = 0 

(33)  

so that it agrees with the second order (singular) solution at the boundaries. It is straightforward to show that the 
required solution is a0 = a2 = 0 and 

or 

This solution is compared to the singular solution ( 2 8 )  in Fig. 1. From the data shown in the figure one can conclude 
that the solution to Eq. (26) is well-described by the singular result ( 2 8 )  as long as we stay away from the immediate 
vicinity of x = 0. 



. ‘  
9 

1 

0.5 

0 

-0.5 

-1 
-1 -0.5 0 0.5 1 “-1 -0.5 0 0.5 1 

X X 

FIG. 1: We compare the singular solution of our simple toy problem to the complete solution (for e = 2 x of the higher 
order (non-singular) equation. While the two functions agree well over the entire range (left panel), the derivatives obviously 
differ near the singular point at the origin (right panel). The figures illustrate that the singular.solution provides an acceptable 
approximation to the true solution well away from a region near the origin. 

IV. THE R-MODES OF NONBAROTROPIC RELATIVISTIC STARS 

The discussion in the previous two sections has crucial implications for our attempt to  solve the relativistic r-mode 
problem for nonbarotropic stars. ClGarly, we can use our two solutions to Eq. (5) to  approximate the physical solution 
to the problem away from T = TO even though one of these expansions is technically singular at r g .  This provides us 
with the means to  continue the numerical solution of Eq. (5) across r = TO,  even though we will not be able to infer 
the exact form of the solution in a thin [30] “boundary layer” near this point. Should we require this information we 
must carry the slow-rotation calculation t o  higher orders and solve a much more complicated problem. 

We thus propose the following strategy for solving the relativistic r-mode problem in nonbarotropic stars: First 
integrate the regular solution from the origin up to r = ro - 6, where 6 is suitably small. Then use the numerical 
solution to fix the two constants a0 and bo in the linear combination (cf. (11) and (21) ) 

(42) 

Finally, this approximate solution is used to re-initiate numerical integration at ro + 6. This approach was first 
advocated by one of us in a set of circulated but unpublished notes [31], and the idea was resurrected by Ruoff and 
Kokkotas [ll]. 

We have used the proposed strategy to calculate r-modes for a wide range of polytropic stellar models. Typical 
results are shown in Figure 2. (Shown also for comparison are the hybrid mode frequencies of fully relativistic 
barotropes [9]. The hybrids shown are those that limit t o  the 1 = m = 2 r-mode of the corresponding Newtonian 
barotropic model.) By comparing the obtained mode-eigenvalues CY to the values for the relativistic framedragging at 
the centre and surface of the star (Wc and W,, respectively), one can see that the r-mode problem is always regular 
for uniform density stars. As the equation of state becomes softer (n increases) the situation changes. For example, 
for n = 1 polytropes one must typically consider the singular problem in order t o  find the relativistic r-mode. This 
conclusion is in agreement with Kokkotas and Ruoff [ll] as well as Yoshida [13]. It is worth emphasizing that the 
hybrid mode problem for barotropic stars is never singular [8, 91 unless one makes the Cowling approximation [17, 201, 
an approximation that is not in fact appropriate in the barotropic case. 

Before discussing our results further we need to comment on a difference between our calculation and those in 
[ll, 131. In these papers the authors consider polytropic equations of state of the form 

77 1A-1 I n  I 

... , I  witn p tne pressure ana e me energy aensity. ivieanwnue, we are using 

, and ~ = p o + n p  (44) 
l+l/n P = KPO 

where po is the rest-mass density, in order to  stay in line with the analysis of the hybrid rotational modes of barotropic 
stars [9]. This means that our numerical results cannot be directly compared to those in 1111. In order to verify that 
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FIG. 2: The r-mode eigenfrequencies a of relativistic nonbarotropic stars for n = 0 (left panel) and n = 1 polytropes (right 
panel). Also shown are the corresponding values of the relativistic framedragging at the centre Gc and surface W s  of the star. 
Whenever W, < a < Gs the problem is formally singular. As is clear from the data, the uniform density case (n = 0) is always 
regular while most of our n = 1 models are in the singular range. Also shown (as a dashed curve) are the eigenfrequencies for 
the axial-led hybrid mode of a barotropic star that most resembles the leading Newtonian r-mode. Note that the hybrid mode 
problem is never singular. 

the results are consistent we have done some calculations using also (43). We then find that our results are in perfect 
agreement with those of Ruoff and Kokkotas. 

Our calculations thus support the numerical results of the previous studies. It is clear that, for more realistic 
equations of state one must consider the singular r-mode problem. Where we differ from both Ruoff and Kokkotas 
[ll] and Yoshida [13] is in the interpretation of the results in these cases. Yoshida only considers the regular problem, 
and tentatively argues that there may not exist any relativistic r-modes when the problem is singular. Similar 
conclusions are drawn by Ruoff and Kokkotas [ll]. As we have already indicated, we disagree with these conclusions. 
Even in the slow rotation approximation the physical perturbations, obtained by solving the initial value problem, are 
non-singular. However, the root cause of the singular nature of the mode problem is a breakdown in the slow-rotation 
approximation. We believe that this problem would not arise if the calculation were taken to  higher orders in R in the 
vicinity of the “singular” point (in analogy with boundary layer studies in problems involving viscous fluid flows). The 
physical problem is likely to be perfectly regular, but unless we extend the slow-rotation calculation to higher orders 
(or approach the problem in a way that avoids the slow-rotation expansion) we cannot solve the r-mode problem 
completely for nonbarotropic stars. However, we have shown how the r-mode eigenfrequencies can be estimated using 
only the solution to  the singular mode problem, where they manifest themselves as zero-step solutions. 

The case in favor of our approach has been argued (we believe convincingly) in the previous sections. In addition, 
we can provide one further piece of evidence. In our previous study [8], it was pointed out that there is a striking 
similarity between the eigenfunctions of modes in barotropic and nonbarotropic stars. For example, the metric variable 
h(r) for an I = m = 2 r-mode of a nonbarotropic uniform density star was very similar to  that of the axial-led hybrid 
mode corresponding to the Newtonian 1 = m = 2 r-mode. This is exactly what one would expect if the two represent 
a related physical mode-solution. We can now extend this comparison to  the case of polytropic stars. The relevant 
data are shown in Figure 3. We believe these data provide further support for the relevance of our nonbarotropic 
relativistic r-mode results. 

V. CONCLUSIONS AND CAVEATS 

We have discussed the calculation of r-modes of relativistic nonbarotropic stars, shedding new light on a problem 
that has been associated with some confusion in the literature. We have shown how the seemingly singular problem 
can (in principle) be regularized, using standard ideas from boundary layer theory and viscous fluid flows, and how 
one can nonetheless estimate the eigenfrequencies of the desired r-modes from the singular mode problem. There are 
however issues that remain to be resolved, two of which merit particular comment. 

Kojima’s equation admits a continuous spectrum of singular solutions whose collective physical perturbation is 
however non-singular. The time-dependence of the collective perturbation is complicated, but includes a position 1 
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FIG. 3: The eigenfunction for an r-mode of a relativistic nonbarotropic star is compared to the corresponding axial-led hybrid 
mode of a barotropic model. In each comparison, the equilibrium model is chosen to be the same: a relativistic polytrope of 
compactness M / R  = 0.2 and polytropic index n .= 0.5 (left panel) or n = 1.0 (xight panel). The left panel shows a case in 
which the nonbarotropic mode is regular while the right panel shows a case in which the nonbarotropic mode is singular (the 
singular point is close to the surface at ro = 0.913R.) The functions are all normalized so that h(R)  = 1. 

depeiideiit fiequeiicj. contiibuiiofi, md possible power iaw decay with time. At certain frequencies within the con- 
tizxmx spectrum m c  caii Fixid pertabiitions iliiii behave like stable modes, whose physical manifestation is again 
non-singular (the zero-step solutions). We have argued in this paper that the underlying physical problem can however 
be regularized by considering higher order rotational corrections. The effect of such regularization on the continuous 
spectrum and zero-step solutions is as yet unclear. If the zero-step solutions become regular normal modes then this 
would be physically interesting. The fate of the rest of the continuous spectrum is unknown; it may remain, vanish, 
or break up into discrete normal modes. 

The second issue is of relevance should we want to assess the astrophysical importance of the r-modes we have 
computed. In order to do this we need to  estimate the timescale on which the mode grows due to gravitational wave 
emission [9, 321. This calculation requires knowledge of the perturbed fluid velocity in order for the relevant canonical 
mode-energy to be evaluated. In the notation of [SI, we need the variable U(T) .  We know from Eq. (4.21) in [SI that 

(a-5) U = - a h  

Clearly if we were to use our mode solution to Eq. ( 5 ) ,  the corresponding result for U would necessarily be singular, 
blowing up like l/(a - i;l) at the singular point. In accordance with the arguments in Sections I1 and I11 above, it 
is easy to argue that the “physical” solution U ( T )  will be smoothed out by including higher order terms near the 
singular point and thus be regular at all points inside the star. However,solving this higher order problem is difficult. 
We can in principle avoid having to solve the higher order problem by solving instead the time-dependent initial value 
problem for the physical velocity perturbation. The physical velocity perturbation, just like the metric perturbation, 
will be non-singular. Unfortunately solution of the initial value problem is very difficult if one does not have a full 
analytic solution for the singular mode problem (see [16] where the same issues are discussed for the differential 
rotation problem). This may well mean that we cannot meaningfully estimate the gravitational radiation reaction 
timescale for the singular nonbarotropic modes discussed in this paper. 
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